
Sample Questions for Midterm 2 (CS 421 Fall 2014)

On the actual midterm, you will have plenty of space to put your answers.
Some of these questions may be reused for the exam.

1. Given a polymorphic type derivation for

 {} |- let pair = fun x -> (x, x) in pair(pair 3) : ((int * int) * (int * int))
2. Give a (most general) unifier for the following unification instance. Capital letters denote

variables of unification. Show your work by listing the operation performed in each step of the
unification and the result of that step.

{X = f(g(x),W); h(y) = Y; f(Z,x) = f(Y,W)}
3. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and

a regular grammar that generates the language described.
a. The set of all strings over {a, b, c}, where each string has at most one a

b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed

by at least one c.

c. The set of all strings over {a, b, c}, where every string has length a multiple of four.

4. Consider the following grammar:
<S> ::= <A> | <A> <S>
<A> ::= <Id> | (
 ::= <Id>] | <Id> | (
<Id> ::= 0 | 1

For each of the following strings, give a parse tree for the following expression as an <S>, if
one exists, or write “No parse” otherwise:

a. (0 1 (1] ((1 0] 1
b. 0 (1 0 (1]
c. (0 (1 0 1] 0]

5. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase

are terminals):
S ::= A a B | B a A
A ::= b | c
B ::= a | b

6. Write an unambiguous grammar generating the set of all strings over the alphabet {0, 1, +, -},
where + and – are infixed operators which both associate to the left and such that + binds more
tightly than -.

7. Write a recursive descent parser for the following grammar:,
<S> ::= <N> % <S> | <N>
<N> ::= g <N> | a | b

b

You should include a datatype token of tokens input into the parser, one or more datatypes
representing the parse trees produced by parsing (the abstract syntax trees), and the
function(s) to produce the abstract syntax trees. Your parser should take a list of tokens as
input and generate an abstract syntax tree corresponding to the parse of the input token list.

